Measuring the Orthopositronium Annihilation **Decay Rate**

Ivneet K. Bhangoo, Donovan M. Newson and David B. Cassidy Department of Physics and Astronomy, University College London, UK

Introduction

- Precision measurements of Positronium (Ps), being a purely leptonic system with an absence of hadrons, may be used to test bound-state QED theory and create a more complete picture within the standard model.
- Current triplet ground state decay rate (o-Ps) measurements [1] exhibit uncertainties of 100 parts per million (100 ppm), two orders of magnitudes larger than theory \bullet (2.7 ppm [2]).
- The precision of previous measurements, utilising positronium annihilation lifetime spectroscopy (PALS) techniques [1,3,4], were limited by the need to consider interactions between Ps atoms and material in the formation target during decays, as well as external fields.
- We present a technique wherein interactions of Ps with the environment are not considered, by allowing an energetic Ps beam to decay in free space and assessing

Apparatus

The energy distribution of the Ps beam, determined by the incident positron beam, follows a Gaussian distribution, with a full width at half maximum \approx 1.3 eV [6].

The counts at various distances from the gas cell were measured using an adjustable micro-channel plate (MCP) detector, mounted onto a linear magnetic manipulator.

Positrons from a ²²Na source were thermalised by a solid neon moderator and emitted into a vacuum as a monoenergetic beam.

A Ps beam, primarily ground state, formed through positron- N_2 gas collisions in a gas cell [5, 6]. The beam was accelerated to the required energy by an electric field.

Ps lifetime

Monte Carlo simulations used measured velocity distributions to identify the Ps fraction missing the (37.5 mm radius) detector due to beam divergence, generating a function f(t) using linear interpolation.

Decay rate

The precision was limited by a high gamma background and low Ps formation rate, large measurement range and creation of some long-lived 2S state atoms ($\approx 4\%$.)

Potential improvements:

Shielding detector from radiation using a beam deflector and high-Z shield around gas cell.

- Decreasing range of Ps beam loss through collimation, a larger movable detector area or an imaging detector to identify point of loss.
- Eliminating 2S fraction with a high-power microwave radiation source to drive transitions to shorter lived states.

References

45

1 40

<u>s</u> 35

rate ³⁰

25 Count

20

15 -

[1] Y. Kataoka, S. Asai, and T. Kobayashi, Phys. Lett. B, 671 219 (2009)

 $b = 9.0 \pm 0.3$

180

Data (62 eV)

[2] G. S. Adkins, D. B. Cassidy and J. Perez-Rios, Phys. Rep., 975 1 (2022)

[3] R. S. Vallery, P. W. Zitzewitz, D. W. Gidley, Phys. Rev. Lett. 90 203403 (2003)

[4] S. Asai, O. Jinnouchi, T. Kobayashi, Int. J. Mod. Phys. A 19 3927 (2004)

[5] A. Ozen, A. J. Garner, G. Laricchia, Nucl. Instrum. and Meth. in Phys. Res. B 171 172 (2000)

[6] D. M. Newson, T. J. Babij, D. B. Cassidy, Rev. Sci. Instrum., 94 083201 (2023)