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• Precision measurements of Positronium (Ps), being a purely leptonic system with an absence of hadrons, may be used to test bound-state QED theory and create a 

more complete picture within the standard model.

• Current triplet ground state decay rate (o-Ps) measurements [1] exhibit uncertainties of 100 parts per million (100 ppm), two orders of magnitudes larger than theory 

(2.7 ppm [2]). 

• The precision of previous measurements, utilising positronium annihilation lifetime spectroscopy (PALS) techniques [1,3,4], were limited by the need to consider 

interactions between Ps atoms and material in the formation target during decays, as well as external fields. 

• We present a technique wherein interactions of Ps with the environment are not considered, by allowing an energetic Ps beam to decay in free space and assessing 

the surviving fraction of a beam as a function of flight time.

Introduction

Ps lifetime

Monte Carlo simulations used 

measured velocity distributions to 

identify the Ps fraction missing the 

(37.5 mm radius) detector due to

beam divergence, generating a 

function f(t) using linear interpolation.

The o-Ps lifetime (𝜏), along with initial 

counts (N0) and constant (c), were obtained 

as fit parameters from an exponential fit of 

N0e
-t/𝜏 f(t) + cg(t), on the total measured 

count rate as a function of flight time.

A function g(t) ∝ 1/t2 , was fitted to the 

background count rate (2-photon 

background, electronic noise, dark counts) over 

flight time (obtained by dividing distances by Ps 

beam velocity.)
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Decay rate

A weighted average over 

values for various Ps beam 

energies yielded a final decay 

rate: 6.62 ± 0.24 MHz.

The precision was limited by a high gamma background and low Ps 

formation rate, large measurement range and creation of some long-lived 

2S state atoms (≈ 4%.) 

Potential improvements:

• Shielding detector from radiation using a beam deflector and high-Z 

shield around gas cell.

• Decreasing range of Ps beam loss through collimation, a larger 

movable detector area or an imaging detector to identify point of 

loss.

• Eliminating 2S fraction with a high-power microwave radiation 

source to drive transitions to shorter lived states.

This is within 1.8σ of the 

theoretical value (7.039979 

MHz [2].) Ps beam energy (eV)
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Positrons from a 22Na source were thermalised by a solid neon 

moderator and emitted into a vacuum as a monoenergetic beam.

Apparatus

The energy distribution of the Ps beam, determined by the incident positron beam, follows 

a Gaussian distribution, with a full width at half maximum ≈ 1.3 eV [6].

The counts at various distances from the gas cell were measured using an adjustable 

micro-channel plate (MCP) detector, mounted onto a linear magnetic manipulator.

A Ps beam, primarily ground state, formed through positron-N2 gas 

collisions in a gas cell [5, 6]. The beam was accelerated to the required 

energy by an electric field.
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