Characterization of a waveguide with Rydberg helium field sensing

S. H. Reeder, S. D. Hogan, D. B. Cassidy

Department of Physics and Astronomy, University College London, UK

Precision measurements of positronium (Ps) can be considered to be direct tests of QED theory, and potential harbingers of physics beyond the standard model [1]. Measurements of the Ps n = 2 fine structure at UCL have in the past exhibited asymmetric line shapes, shifts from and uncertainties orders of magnitude larger than theory [2]. Here I present a summary of the most recent precision measurement of Ps [3] designed to mitigate these issues and discuss a new measurement using Rydberg helium performed to characterize systematics in the Ps apparatus.

Helium Apparatus

- Same vacuum chamber and waveguide setup as Ps experiment.
- Metastable helium $2^{3}S_{1} \rightarrow n^{3}P_{1}$ Rydberg states prepared with 260 nm.

- Rydberg atoms selectively field ionized.
- Plan to test further Ps experiments in-situ.

Ps Waveguide Experiment Retroreflection New setup designed to Mirror limit reflections in the

- chamber.
- No more asymmetry. • Two antennae: results differ for different microwave propagation direction.
- New systematic: likely structural irregularities.

Zeeman curves

Helium Line shapes $37p \rightarrow 37d$ gnal (arb. 8.0 0.1 • Line shapes -x dir + x dirmeasured by 11µs, 0.3mmvarying

for different propagation directions extrapolate back to different zero field centroid values: 1.8 MHz discrepancy.

Atom distribution in the waveguide

- Atoms outside the waveguide still exhibit line
- antenna side
- microwave frequency. Measurements performed at series of pulse times corresponding to different positions in the wave guide. Atom cloud approximately 3mm wide set by laser spot size, giving ~ 4 distinct points in the waveguide to measure

References

[1] S. G. Karshenboim, Physics Reports, vol. 422, no. 1-2, pp. 1–63, 2005. [2] R. E. Sheldon, T. J. Babij, S. H. Reeder, S. D. Hogan, and D. B. Cassidy, Phys. Rev. A 107, 042810 April 2023

[3] R. E. Sheldon, T. J. Babij, S. H. Reeder, S. D. Hogan, and D. B. Cassidy, Phys. Rev. Lett (Accepted for publication)

field. • Clear broadening of line shapes at one end of the guide implies inhomogeneous field distribution in z direction.

s.reeder@ucl.ac.uk

Download this poster at antimattergravity.com

